

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

FURTHER MATHEMATICS

9231/13

Paper 1 Further Pure Mathematics 1

October/November 2023

2 hours

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 16 pages. Any blank pages are indicated.

DC (SK) 333699 © UCLES 2023

[Turn over

	$\sum_{r=1}^{n} r = \frac{1}{2}n(n+1).$	[4]
		•••••
••••		
		•••••
		•••••
••••		
••••		

ven that $\sum_{r=1}^{n} (r+a) = n$, find a in terms of n.	[.

$1 \pm 2v \pm 2v^2 + \cdots + nv^{n-1} =$	$1 + 2x + 3x^{2} + \dots + nx^{n-1} = \frac{1 - (n+1)x^{n} + nx^{n+1}}{(1-x)^{2}}.$					
$1 + 2x + 3x + \dots + nx =$	$(1-x)^2$	[6				

	$\alpha + \beta + \gamma + \delta = 3,$	$\alpha^2 + \beta^2 + \gamma^2 + \delta^2 = 5,$	$\alpha^{-1} + \beta^{-1} + \gamma^{-1} + \delta^{-1} = 6.$	
(a) I	Find the values of b , c and	dd.		[6]
•				•••••
•				•••••
•				
				•••••
•				••••••
•				
h) (Given also that $\alpha^3 + \beta^3 +$	$\gamma^3 + \delta^3 = -27$, find the value o	$f \alpha^4 + \beta^4 + \gamma^4 + \delta^4$	[2]
	or the under that or it p			[-]
~)				
-				

3

4	The	lines	1.	and	1.	have	equations
	1110	111100	<i>u</i> 1	ullu	$\nu \gamma$	114 1 0	equations

$\mathbf{r} = -2\mathbf{i} - 3\mathbf{j} - 5\mathbf{k} + \lambda(-4\mathbf{i} + 3\mathbf{j} + 5\mathbf{k})$	and	$\mathbf{r} = 2\mathbf{i} - 2\mathbf{j} + 3\mathbf{k} + \mu(2\mathbf{i} - 3\mathbf{j} + \mathbf{k})$
respectively.		

Find the shortest distance between l_1 and l_2 .	[5

Find an equation of	of Π , giving you	r answer in the	form $ax + by$	+cz=d.	
			•••••		
	•••••				
•••••					
	•••••				
			•••••		•••••
		•••••	•••••		
•••••		•••••	•••••	•••••	
	,	•••••			
					,

5 Let k be a constant. The matrices A, B and C are give

Stant. The matrices **A**, **B** and **C** are given by
$$\mathbf{A} = \begin{pmatrix} 1 & k & 3 \\ 2 & 1 & 3 \\ 3 & 2 & 5 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 0 & -2 \\ -1 & 3 \\ 0 & 0 \end{pmatrix} \quad \text{and} \quad \mathbf{C} = \begin{pmatrix} -2 & -1 & 1 \\ 1 & 1 & 3 \end{pmatrix}.$$

It is given that **A** is singular.

Show that $\mathbf{CAB} = \begin{pmatrix} 3 & -7 \\ -9 & 3 \end{pmatrix}$.	
Find the equations of the invariant lines, through the or epresented by CAB .	igin, of the transformation in the $x-y$
Find the equations of the invariant lines, through the or represented by CAB .	igin, of the transformation in the $x-y$
Find the equations of the invariant lines, through the or represented by CAB .	igin, of the transformation in the $x-y$
Find the equations of the invariant lines, through the or epresented by CAB .	rigin, of the transformation in the $x-y$
Find the equations of the invariant lines, through the or epresented by CAB.	igin, of the transformation in the $x-y$
Find the equations of the invariant lines, through the or epresented by CAB .	igin, of the transformation in the $x-y$
Find the equations of the invariant lines, through the or represented by CAB .	igin, of the transformation in the $x-y$
Find the equations of the invariant lines, through the or represented by CAB.	igin, of the transformation in the $x-y$
Find the equations of the invariant lines, through the or epresented by CAB.	igin, of the transformation in the $x-y$
epresented by CAB.	
Find the equations of the invariant lines, through the or represented by CAB.	

									•••••			
				•••••			•••••				• • • • • • • • • • • • • • • • • • • •	
(c)	The	e matric	es D, E	and F re	present g	geometric	cal transf	ormation	s in the x	−y plane.		
	•	E rep	resents a	a stretch	parallel t	entre the so the x -arilline $y = 1$	xis.					
	Giv	en that	CAB =	D – 9 E]	F, find D	, E and I	₹.					[5]
											•••••	
		•••••	•••••									
							•••••				•••••	
							•••••				•••••	
							•••••					

6	(a)	Show	that	the	curve	with	Cartesian	equation
U	(a)	SHOW	mai	uic	curve	willi	Cartesian	Equation

	$\left(x - \frac{1}{2}\right)^2 + y^2 =$	
malam aquation u — aaa 0		

	has polar equation $r = \cos \theta$.	[3]
The	curves C_1 and C_2 have polar equations	
	$r = \cos \theta$ and $r = \sin 2\theta$	
resp	pectively, where $0 \le \theta \le \frac{1}{2}\pi$. The curves C_1 and C_2 intersect at the pole and at another po	oint P.
(b)	Find the polar coordinates of P .	[3]

(c) In a single diagram sketch C_1 and C_2 , clearly identifying each curve, and mark the point P. [3]

(d)	The region R is enclosed by C_1 and C_2 and includes the line OP .							
	Find, in exact form, the area of R . [6]							

-,	Find the equations of the asymptotes of C .	
o)	Find the coordinates of any stationary points on C, giving your answers	s correct to 1 decima
b)	Find the coordinates of any stationary points on C, giving your answers	s correct to 1 decima
b)	Find the coordinates of any stationary points on <i>C</i> , giving your answers	s correct to 1 decima
b)	Find the coordinates of any stationary points on <i>C</i> , giving your answers	s correct to 1 decima
b)	Find the coordinates of any stationary points on <i>C</i> , giving your answers	s correct to 1 decima
b)	Find the coordinates of any stationary points on <i>C</i> , giving your answers	s correct to 1 decima
b)	Find the coordinates of any stationary points on <i>C</i> , giving your answers	s correct to 1 decima
b)	Find the coordinates of any stationary points on <i>C</i> , giving your answers	s correct to 1 decima
b)	Find the coordinates of any stationary points on <i>C</i> , giving your answers	s correct to 1 decima
b)	Find the coordinates of any stationary points on <i>C</i> , giving your answers	
b)		

(c)	Sketch <i>C</i> , stating the coordinates of any intersections with the axes.	[3]
(d)	Sketch the curve with equation $y = \frac{1}{f(x)}$.	[2]

Find the set of values for which $\frac{1}{f(x)} < f(x)$.	

Additional page

If you use the following page to complete shown.	e the answer to any	question, the questi	ion number must b	e clearly
				••••••

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.